3.11.76 \(\int \frac {x^{3/2}}{(a+b x^2+c x^4)^2} \, dx\) [1076]

Optimal. Leaf size=442 \[ -\frac {\sqrt {x} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {c^{3/4} \left (3+\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (3+\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \]

[Out]

1/4*c^(3/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(3+4*b/(-4*a*c+b^2)^(1/2))*2^(3/4)/(
-4*a*c+b^2)/(-b-(-4*a*c+b^2)^(1/2))^(3/4)+1/4*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^
(1/4))*(3+4*b/(-4*a*c+b^2)^(1/2))*2^(3/4)/(-4*a*c+b^2)/(-b-(-4*a*c+b^2)^(1/2))^(3/4)+1/4*c^(3/4)*arctan(2^(1/4
)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(3-4*b/(-4*a*c+b^2)^(1/2))*2^(3/4)/(-4*a*c+b^2)/(-b+(-4*a*c+b
^2)^(1/2))^(3/4)+1/4*c^(3/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(3-4*b/(-4*a*c+b^2
)^(1/2))*2^(3/4)/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)-1/2*(2*c*x^2+b)*x^(1/2)/(-4*a*c+b^2)/(c*x^4+b*x^2+
a)

________________________________________________________________________________________

Rubi [A]
time = 0.47, antiderivative size = 442, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1129, 1378, 1436, 218, 214, 211} \begin {gather*} \frac {c^{3/4} \left (\frac {4 b}{\sqrt {b^2-4 a c}}+3\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}+\frac {c^{3/4} \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \text {ArcTan}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}+\frac {c^{3/4} \left (\frac {4 b}{\sqrt {b^2-4 a c}}+3\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}+\frac {c^{3/4} \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\sqrt {x} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(3/2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

-1/2*(Sqrt[x]*(b + 2*c*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (c^(3/4)*(3 + (4*b)/Sqrt[b^2 - 4*a*c])*ArcT
an[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*(b^2 - 4*a*c)*(-b - Sqrt[b^2 - 4*a*c]
)^(3/4)) + (c^(3/4)*(3 - (4*b)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1
/4)])/(2*2^(1/4)*(b^2 - 4*a*c)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) + (c^(3/4)*(3 + (4*b)/Sqrt[b^2 - 4*a*c])*ArcTan
h[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*(b^2 - 4*a*c)*(-b - Sqrt[b^2 - 4*a*c])
^(3/4)) + (c^(3/4)*(3 - (4*b)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1
/4)])/(2*2^(1/4)*(b^2 - 4*a*c)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 1129

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1378

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^(n - 1)*(d*x)^(m
 - n + 1)*(b + 2*c*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] - Dist[d^n/(n*(p + 1)*
(b^2 - 4*a*c)), Int[(d*x)^(m - n)*(b*(m - n + 1) + 2*c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p +
 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1] && G
tQ[m, n - 1] && LeQ[m, 2*n - 1]

Rule 1436

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rubi steps

\begin {align*} \int \frac {x^{3/2}}{\left (a+b x^2+c x^4\right )^2} \, dx &=2 \text {Subst}\left (\int \frac {x^4}{\left (a+b x^4+c x^8\right )^2} \, dx,x,\sqrt {x}\right )\\ &=-\frac {\sqrt {x} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\text {Subst}\left (\int \frac {b-6 c x^4}{a+b x^4+c x^8} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right )}\\ &=-\frac {\sqrt {x} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (c \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right )}-\frac {\left (c \left (3+\frac {4 b}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^4} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right )}\\ &=-\frac {\sqrt {x} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (c \left (3+\frac {4 b}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right ) \sqrt {-b-\sqrt {b^2-4 a c}}}+\frac {\left (c \left (3+\frac {4 b}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right ) \sqrt {-b-\sqrt {b^2-4 a c}}}+\frac {\left (c \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right ) \sqrt {-b+\sqrt {b^2-4 a c}}}+\frac {\left (c \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-b+\sqrt {b^2-4 a c}}+\sqrt {2} \sqrt {c} x^2} \, dx,x,\sqrt {x}\right )}{2 \left (b^2-4 a c\right ) \sqrt {-b+\sqrt {b^2-4 a c}}}\\ &=-\frac {\sqrt {x} \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {c^{3/4} \left (3+\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (3+\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}+\frac {c^{3/4} \left (3-\frac {4 b}{\sqrt {b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \left (b^2-4 a c\right ) \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.18, size = 110, normalized size = 0.25 \begin {gather*} \frac {-\frac {4 \sqrt {x} \left (b+2 c x^2\right )}{a+b x^2+c x^4}+\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b \log \left (\sqrt {x}-\text {$\#$1}\right )-6 c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]}{8 \left (b^2-4 a c\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)/(a + b*x^2 + c*x^4)^2,x]

[Out]

((-4*Sqrt[x]*(b + 2*c*x^2))/(a + b*x^2 + c*x^4) + RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[Sqrt[x] - #1] - 6*c*L
og[Sqrt[x] - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ])/(8*(b^2 - 4*a*c))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.06, size = 118, normalized size = 0.27

method result size
derivativedivides \(\frac {\frac {2 c \,x^{\frac {5}{2}}}{8 a c -2 b^{2}}+\frac {2 b \sqrt {x}}{16 a c -4 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (6 \textit {\_R}^{4} c -b \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{32 a c -8 b^{2}}\) \(118\)
default \(\frac {\frac {2 c \,x^{\frac {5}{2}}}{8 a c -2 b^{2}}+\frac {2 b \sqrt {x}}{16 a c -4 b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (6 \textit {\_R}^{4} c -b \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{32 a c -8 b^{2}}\) \(118\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)

[Out]

2*(1/2*c/(4*a*c-b^2)*x^(5/2)+1/4*b/(4*a*c-b^2)*x^(1/2))/(c*x^4+b*x^2+a)+1/8/(4*a*c-b^2)*sum((6*_R^4*c-b)/(2*_R
^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")

[Out]

1/2*(b*c*x^(9/2) + (b^2 - 2*a*c)*x^(5/2))/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)
*x^2) + integrate(-1/4*(b*c*x^(7/2) + (b^2 + 6*a*c)*x^(3/2))/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c +
(a*b^3 - 4*a^2*b*c)*x^2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 10570 vs. \(2 (350) = 700\).
time = 6.56, size = 10570, normalized size = 23.91 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")

[Out]

-1/8*(4*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(sqrt(1/2)*sqrt(-(b^7 + 21*a*b^5*c
 + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 + (a^3*b^12 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^6*c^3 + 3840*a^
7*b^4*c^4 - 6144*a^8*b^2*c^5 + 4096*a^9*c^6)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 + 1
04976*a^4*c^4)/(a^6*b^18 - 36*a^7*b^16*c + 576*a^8*b^14*c^2 - 5376*a^9*b^12*c^3 + 32256*a^10*b^10*c^4 - 129024
*a^11*b^8*c^5 + 344064*a^12*b^6*c^6 - 589824*a^13*b^4*c^7 + 589824*a^14*b^2*c^8 - 262144*a^15*c^9)))/(a^3*b^12
 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^6*c^3 + 3840*a^7*b^4*c^4 - 6144*a^8*b^2*c^5 + 4096*a^9*c^6)))*
arctan(1/2*(sqrt(1/2)*(b^18 + 25*a*b^16*c - 146*a^2*b^14*c^2 - 5320*a^3*b^12*c^3 - 2464*a^4*b^10*c^4 + 1076096
*a^5*b^8*c^5 - 10483200*a^6*b^6*c^6 + 44181504*a^7*b^4*c^7 - 89579520*a^8*b^2*c^8 + 71663616*a^9*c^9 - (a^3*b^
23 - 20*a^4*b^21*c + 432*a^5*b^19*c^2 - 11712*a^6*b^17*c^3 + 195072*a^7*b^15*c^4 - 1935360*a^8*b^13*c^5 + 1221
4272*a^9*b^11*c^6 - 50823168*a^10*b^9*c^7 + 139788288*a^11*b^7*c^8 - 245628928*a^12*b^5*c^9 + 250609664*a^13*b
^3*c^10 - 113246208*a^14*b*c^11)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 + 104976*a^4*c^
4)/(a^6*b^18 - 36*a^7*b^16*c + 576*a^8*b^14*c^2 - 5376*a^9*b^12*c^3 + 32256*a^10*b^10*c^4 - 129024*a^11*b^8*c^
5 + 344064*a^12*b^6*c^6 - 589824*a^13*b^4*c^7 + 589824*a^14*b^2*c^8 - 262144*a^15*c^9)))*sqrt((49*b^12*c^2 + 3
150*a*b^10*c^3 + 95985*a^2*b^8*c^4 + 1621296*a^3*b^6*c^5 + 15746400*a^4*b^4*c^6 + 75582720*a^5*b^2*c^7 + 13604
8896*a^6*c^8)*x + 1/2*sqrt(1/2)*(b^18 + 52*a*b^16*c + 1269*a^2*b^14*c^2 + 14294*a^3*b^12*c^3 + 48608*a^4*b^10*
c^4 - 679392*a^5*b^8*c^5 - 4209408*a^6*b^6*c^6 - 4105728*a^7*b^4*c^7 + 214990848*a^8*b^2*c^8 - 483729408*a^9*c
^9 - (a^3*b^23 + 7*a^4*b^21*c - 152*a^5*b^19*c^2 - 2960*a^6*b^17*c^3 + 44032*a^7*b^15*c^4 + 60928*a^8*b^13*c^5
 - 4444160*a^9*b^11*c^6 + 36855808*a^10*b^9*c^7 - 153681920*a^11*b^7*c^8 + 363528192*a^12*b^5*c^9 - 467140608*
a^13*b^3*c^10 + 254803968*a^14*b*c^11)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2*c^3 + 104976*
a^4*c^4)/(a^6*b^18 - 36*a^7*b^16*c + 576*a^8*b^14*c^2 - 5376*a^9*b^12*c^3 + 32256*a^10*b^10*c^4 - 129024*a^11*
b^8*c^5 + 344064*a^12*b^6*c^6 - 589824*a^13*b^4*c^7 + 589824*a^14*b^2*c^8 - 262144*a^15*c^9)))*sqrt(-(b^7 + 21
*a*b^5*c + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 + (a^3*b^12 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^6*c^3 +
 3840*a^7*b^4*c^4 - 6144*a^8*b^2*c^5 + 4096*a^9*c^6)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*b^2
*c^3 + 104976*a^4*c^4)/(a^6*b^18 - 36*a^7*b^16*c + 576*a^8*b^14*c^2 - 5376*a^9*b^12*c^3 + 32256*a^10*b^10*c^4
- 129024*a^11*b^8*c^5 + 344064*a^12*b^6*c^6 - 589824*a^13*b^4*c^7 + 589824*a^14*b^2*c^8 - 262144*a^15*c^9)))/(
a^3*b^12 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^6*c^3 + 3840*a^7*b^4*c^4 - 6144*a^8*b^2*c^5 + 4096*a^9
*c^6)))*sqrt(-(b^7 + 21*a*b^5*c + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 + (a^3*b^12 - 24*a^4*b^10*c + 240*a^5*b^8*c
^2 - 1280*a^6*b^6*c^3 + 3840*a^7*b^4*c^4 - 6144*a^8*b^2*c^5 + 4096*a^9*c^6)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*
b^4*c^2 + 17496*a^3*b^2*c^3 + 104976*a^4*c^4)/(a^6*b^18 - 36*a^7*b^16*c + 576*a^8*b^14*c^2 - 5376*a^9*b^12*c^3
 + 32256*a^10*b^10*c^4 - 129024*a^11*b^8*c^5 + 344064*a^12*b^6*c^6 - 589824*a^13*b^4*c^7 + 589824*a^14*b^2*c^8
 - 262144*a^15*c^9)))/(a^3*b^12 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^6*c^3 + 3840*a^7*b^4*c^4 - 6144
*a^8*b^2*c^5 + 4096*a^9*c^6)) - sqrt(1/2)*(7*b^24*c + 400*a*b^22*c^2 + 7843*a^2*b^20*c^3 + 22574*a^3*b^18*c^4
- 1395688*a^4*b^16*c^5 - 11961472*a^5*b^14*c^6 + 98703360*a^6*b^12*c^7 + 1408361472*a^7*b^10*c^8 - 12100202496
*a^8*b^8*c^9 + 1218281472*a^9*b^6*c^10 + 241219731456*a^10*b^4*c^11 - 812665405440*a^11*b^2*c^12 + 83588441702
4*a^12*c^13 - (7*a^3*b^29*c + 85*a^4*b^27*c^2 + 1764*a^5*b^25*c^3 - 37920*a^6*b^23*c^4 - 103296*a^7*b^21*c^5 -
 2564352*a^8*b^19*c^6 + 145468416*a^9*b^17*c^7 - 1602797568*a^10*b^15*c^8 + 6543507456*a^11*b^13*c^9 + 7533166
592*a^12*b^11*c^10 - 193399619584*a^13*b^9*c^11 + 890247315456*a^14*b^7*c^12 - 2078520901632*a^15*b^5*c^13 + 2
556193406976*a^16*b^3*c^14 - 1320903770112*a^17*b*c^15)*sqrt((b^8 + 54*a*b^6*c + 1377*a^2*b^4*c^2 + 17496*a^3*
b^2*c^3 + 104976*a^4*c^4)/(a^6*b^18 - 36*a^7*b^16*c + 576*a^8*b^14*c^2 - 5376*a^9*b^12*c^3 + 32256*a^10*b^10*c
^4 - 129024*a^11*b^8*c^5 + 344064*a^12*b^6*c^6 - 589824*a^13*b^4*c^7 + 589824*a^14*b^2*c^8 - 262144*a^15*c^9))
)*sqrt(x)*sqrt(-(b^7 + 21*a*b^5*c + 168*a^2*b^3*c^2 + 3024*a^3*b*c^3 + (a^3*b^12 - 24*a^4*b^10*c + 240*a^5*b^8
*c^2 - 1280*a^6*b^6*c^3 + 3840*a^7*b^4*c^4 - 6144*a^8*b^2*c^5 + 4096*a^9*c^6)*sqrt((b^8 + 54*a*b^6*c + 1377*a^
2*b^4*c^2 + 17496*a^3*b^2*c^3 + 104976*a^4*c^4)/(a^6*b^18 - 36*a^7*b^16*c + 576*a^8*b^14*c^2 - 5376*a^9*b^12*c
^3 + 32256*a^10*b^10*c^4 - 129024*a^11*b^8*c^5 + 344064*a^12*b^6*c^6 - 589824*a^13*b^4*c^7 + 589824*a^14*b^2*c
^8 - 262144*a^15*c^9)))/(a^3*b^12 - 24*a^4*b^10*c + 240*a^5*b^8*c^2 - 1280*a^6*b^6*c^3 + 3840*a^7*b^4*c^4 - 61
44*a^8*b^2*c^5 + 4096*a^9*c^6)))*sqrt(sqrt(1/2)...

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)/(c*x**4+b*x**2+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")

[Out]

integrate(x^(3/2)/(c*x^4 + b*x^2 + a)^2, x)

________________________________________________________________________________________

Mupad [B]
time = 10.63, size = 2500, normalized size = 5.66 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(a + b*x^2 + c*x^4)^2,x)

[Out]

atan((((((((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^3 +
55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*b^3*c^8 +
324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^3*b^24 + 1
6777216*a^15*c^12 - 48*a^4*b^22*c + 1056*a^5*b^20*c^2 - 14080*a^6*b^18*c^3 + 126720*a^7*b^16*c^4 - 811008*a^8*
b^14*c^5 + 3784704*a^9*b^12*c^6 - 12976128*a^10*b^10*c^7 + 32440320*a^11*b^8*c^8 - 57671680*a^12*b^6*c^9 + 692
06016*a^13*b^4*c^10 - 50331648*a^14*b^2*c^11)))^(1/4)*(100663296*a^8*c^11 + 4096*a*b^14*c^4 - 73728*a^2*b^12*c
^5 + 393216*a^3*b^10*c^6 + 655360*a^4*b^8*c^7 - 15728640*a^5*b^6*c^8 + 69206016*a^6*b^4*c^9 - 134217728*a^7*b^
2*c^10))/(2*(b^8 + 256*a^4*c^4 + 96*a^2*b^4*c^2 - 256*a^3*b^2*c^3 - 16*a*b^6*c)) - (x^(1/2)*(2048*b^17*c^4 - 3
0720*a*b^15*c^5 + 100663296*a^8*b*c^12 + 73728*a^2*b^13*c^6 + 1212416*a^3*b^11*c^7 - 9830400*a^4*b^9*c^8 + 267
38688*a^5*b^7*c^9 - 10485760*a^6*b^5*c^10 - 75497472*a^7*b^3*c^11))/(8*(b^12 + 4096*a^6*c^6 + 240*a^2*b^8*c^2
- 1280*a^3*b^6*c^3 + 3840*a^4*b^4*c^4 - 6144*a^5*b^2*c^5 - 24*a*b^10*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^
19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350
528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*b^3*c^8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^
17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^3*b^24 + 16777216*a^15*c^12 - 48*a^4*b^22*c + 1056*a^5*b
^20*c^2 - 14080*a^6*b^18*c^3 + 126720*a^7*b^16*c^4 - 811008*a^8*b^14*c^5 + 3784704*a^9*b^12*c^6 - 12976128*a^1
0*b^10*c^7 + 32440320*a^11*b^8*c^8 - 57671680*a^12*b^6*c^9 + 69206016*a^13*b^4*c^10 - 50331648*a^14*b^2*c^11))
)^(3/4) + (2232*a*b^3*c^7 - 7*b^5*c^6 + 11664*a^2*b*c^8)/(2*(b^8 + 256*a^4*c^4 + 96*a^2*b^4*c^2 - 256*a^3*b^2*
c^3 - 16*a*b^6*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b
^13*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*
b^3*c^8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^
3*b^24 + 16777216*a^15*c^12 - 48*a^4*b^22*c + 1056*a^5*b^20*c^2 - 14080*a^6*b^18*c^3 + 126720*a^7*b^16*c^4 - 8
11008*a^8*b^14*c^5 + 3784704*a^9*b^12*c^6 - 12976128*a^10*b^10*c^7 + 32440320*a^11*b^8*c^8 - 57671680*a^12*b^6
*c^9 + 69206016*a^13*b^4*c^10 - 50331648*a^14*b^2*c^11)))^(1/4) - (x^(1/2)*(1225*b^6*c^7 - 46656*a^3*c^10 + 10
836*a*b^4*c^8 + 14256*a^2*b^2*c^9))/(8*(b^12 + 4096*a^6*c^6 + 240*a^2*b^8*c^2 - 1280*a^3*b^6*c^3 + 3840*a^4*b^
4*c^4 - 6144*a^5*b^2*c^5 - 24*a*b^10*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2
*b^15*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b
^5*c^7 + 17891328*a^8*b^3*c^8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2
)^15)^(1/2))/(8192*(a^3*b^24 + 16777216*a^15*c^12 - 48*a^4*b^22*c + 1056*a^5*b^20*c^2 - 14080*a^6*b^18*c^3 + 1
26720*a^7*b^16*c^4 - 811008*a^8*b^14*c^5 + 3784704*a^9*b^12*c^6 - 12976128*a^10*b^10*c^7 + 32440320*a^11*b^8*c
^8 - 57671680*a^12*b^6*c^9 + 69206016*a^13*b^4*c^10 - 50331648*a^14*b^2*c^11)))^(1/4)*1i - ((((((b^4*(-(4*a*c
- b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 + 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c^4 - 5852
16*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 10665984*a^7*b^5*c^7 + 17891328*a^8*b^3*c^8 + 324*a^2*c^2*(-(4*a*c - b^
2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^3*b^24 + 16777216*a^15*c^12 - 48*a^
4*b^22*c + 1056*a^5*b^20*c^2 - 14080*a^6*b^18*c^3 + 126720*a^7*b^16*c^4 - 811008*a^8*b^14*c^5 + 3784704*a^9*b^
12*c^6 - 12976128*a^10*b^10*c^7 + 32440320*a^11*b^8*c^8 - 57671680*a^12*b^6*c^9 + 69206016*a^13*b^4*c^10 - 503
31648*a^14*b^2*c^11)))^(1/4)*(100663296*a^8*c^11 + 4096*a*b^14*c^4 - 73728*a^2*b^12*c^5 + 393216*a^3*b^10*c^6
+ 655360*a^4*b^8*c^7 - 15728640*a^5*b^6*c^8 + 69206016*a^6*b^4*c^9 - 134217728*a^7*b^2*c^10))/(2*(b^8 + 256*a^
4*c^4 + 96*a^2*b^4*c^2 - 256*a^3*b^2*c^3 - 16*a*b^6*c)) + (x^(1/2)*(2048*b^17*c^4 - 30720*a*b^15*c^5 + 1006632
96*a^8*b*c^12 + 73728*a^2*b^13*c^6 + 1212416*a^3*b^11*c^7 - 9830400*a^4*b^9*c^8 + 26738688*a^5*b^7*c^9 - 10485
760*a^6*b^5*c^10 - 75497472*a^7*b^3*c^11))/(8*(b^12 + 4096*a^6*c^6 + 240*a^2*b^8*c^2 - 1280*a^3*b^6*c^3 + 3840
*a^4*b^4*c^4 - 6144*a^5*b^2*c^5 - 24*a*b^10*c)))*((b^4*(-(4*a*c - b^2)^15)^(1/2) - b^19 - 12386304*a^9*b*c^9 +
 96*a^2*b^15*c^2 - 2752*a^3*b^13*c^3 + 55296*a^4*b^11*c^4 - 585216*a^5*b^9*c^5 + 3350528*a^6*b^7*c^6 - 1066598
4*a^7*b^5*c^7 + 17891328*a^8*b^3*c^8 + 324*a^2*c^2*(-(4*a*c - b^2)^15)^(1/2) + 3*a*b^17*c + 27*a*b^2*c*(-(4*a*
c - b^2)^15)^(1/2))/(8192*(a^3*b^24 + 16777216*a^15*c^12 - 48*a^4*b^22*c + 1056*a^5*b^20*c^2 - 14080*a^6*b^18*
c^3 + 126720*a^7*b^16*c^4 - 811008*a^8*b^14*c^5 + 3784704*a^9*b^12*c^6 - 12976128*a^10*b^10*c^7 + 32440320*a^1
1*b^8*c^8 - 57671680*a^12*b^6*c^9 + 69206016*a^...

________________________________________________________________________________________